A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis.
نویسندگان
چکیده
In the Drosophila larva, blood cells or hemocytes are formed in the lymph gland. The major blood cell type, called plasmatocyte, is small, non-adhesive and phagocytic. Plasmatocytes differentiate into adhesive lamellocytes to form multilayered capsules around foreign substances or, in mutant melanotic tumor strains, around self tissue. Mutations in cactus or Toll, or constitutive expression of dorsal can induce lamellocyte differentiation and cause the formation of melanotic capsules. As maternally encoded proteins, Toll, Cactus and Dorsal, along with Tube and Pelle, participate in a common signal transduction pathway to specify the embryonic dorsal-ventral axis. Using the maternal pathway as a paradigm, we investigated if these proteins have additional roles in larval hemocyte formation and differentiation. Analysis of cactus mutants that lack Cactus protein revealed that almost all of these animals have an overabundance of hemocytes, carry melanotic capsules and die before reaching pupal stages. In addition, the lymph glands of cactus larvae are considerably enlarged. The number of mitotic cells in the cactus and TollD hemolymph is higher than that in the wild-type hemolymph. The hemocyte density of mutant Toll, tube or pelle hemolymph is significantly lower than that of the wild type. Lethality of mutant cactus animals could be rescued either by the selective expression of wild-type Cactus protein in the larval lymph gland or by the introduction of mutations in Toll, tube or pelle. Cactus, Toll, Tube and Pelle proteins are expressed in the nascent hemocytes of the larval lymph gland. Our results suggest that the Toll/Cactus signal transduction pathway plays a significant role in regulating hemocyte proliferation and hemocyte density in the Drosophila larva. These findings are discussed in light of similar hematopoietic functions of Rel/I(kappa)B-family proteins in mice.
منابع مشابه
Toll Receptor-Mediated Hippo Signaling Controls Innate Immunity in Drosophila
The Hippo signaling pathway functions through Yorkie to control tissue growth and homeostasis. How this pathway regulates non-developmental processes remains largely unexplored. Here, we report an essential role for Hippo signaling in innate immunity whereby Yorkie directly regulates the transcription of the Drosophila IκB homolog, Cactus, in Toll receptor-mediated antimicrobial response. Loss ...
متن کاملCOP9 signalosome subunit 5 (CSN5/Jab1) regulates the development of the Drosophila immune system: effects on Cactus, Dorsal and hematopoiesis.
The COP9 signalosome is a multifunctional regulator essential for Drosophila development. A loss-of-function mutant in Drosophila COP9 signalosome subunit 5 (CSN5) develops melanotic bodies, a phenotype common to mutants in immune signaling. csn5(null) larvae accumulated high levels of Cactus that co-localizes with Dorsal to the nucleus. However, Dorsal-dependent transcriptional activity remain...
متن کاملRegulation of larval hematopoiesis in Drosophila melanogaster: a role for the multi sex combs gene.
Drosophila larval hematopoietic organs produce circulating hemocytes that ensure the cellular host defense by recognizing and neutralizing non-self or noxious objects through phagocytosis or encapsulation and melanization. Hematopoietic lineage specification as well as blood cell proliferation and differentiation are tightly controlled. Mutations in genes that regulate lymph gland cell prolifer...
متن کاملThe Ca2+-dependent protease Calpain A regulates Cactus/IκB levels during Drosophila development in response to maternal Dpp signals
Regulation of NF kappaB activity is central to many processes during development and disease. Activation of NF kappaB family members depends on degradation of inhibitory I kappaB proteins. In Drosophila, a nuclear gradient of the NF kappaB/c-rel protein Dorsal subdivides the embryonic dorsal-ventral axis, defining the extent and location of mesodermal and ectodermal territories. Activation of t...
متن کاملFunctional analysis and regulation of nuclear import of dorsal during the immune response in Drosophila.
In addition to its function in embryonic development, the NF-kappa B/rel-related gene dorsal (dl) of Drosophila is expressed in larval and adult fat body where its RNA expression is enhanced upon injury. Injury also leads to a rapid nuclear translocation of dl from the cytoplasm in fat body cells. Here we present data which strongly suggest that the nuclear localization of dl during the immune ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 125 10 شماره
صفحات -
تاریخ انتشار 1998